
Asteroid Optical Navigation

Final Project Description

ASEN 5044

Fall 2023

1 Project Overview

Following the great success of NASA’s OSIRIS-REx mission to asteroid Bennu,1 an asteroid-
exploration company is planning a follow-up mission to visit such a celestial body again, this
time using a small satellite (SmallSat). Given its weak gravity field and the wealth of information
previously gathered about Bennu’s physical properties, the asteroid has been selected as the best
target for the mission’s technology-demonstration objectives.

A key technology proposed to fly aboard the spacecraft is the autonomous, vision-based navi-
gation system to perform asteroid proximity operations. Current deep-space missions heavily rely
on costly ground-based operations. Demonstrating autonomous capabilities would be an important
stepping stone toward increasing the amount of deep-space missions and their capabilities, as well
as drastically reducing operational costs.

The proposed vision-based navigation algorithm uses an onboard camera to acquire images of
the asteroid surface from orbit. Images are used to detect surface landmarks, i.e., salient surface
points such as boulders and craters, which can be identified from multiple orbital viewpoints.
Landmarks are detected as patterns of pixels in the images. The location of one such pattern in
image coordinates provides a line-of-sight observation, i.e., a measurement of the direction from
the observing camera to the observed landmark. It is hypothesized that, by processing multiple
line-of-sight measurements of surface landmarks, the autonomous-navigation system will be capable
of estimating the spacecraft trajectory.

As the mission’s navigation team, you are tasked with analyzing the performance of the proposed
autonomous-navigation system and ultimately determine whether it is suitable for the company’s
mission to Bennu. You can do so using numerical simulations of (i) the spacecraft orbital motion
about the asteroid, (ii) the landmark-based line-of-sight measurements, and (iii) the navigation filter
itself. Figure 1 shows the simulated trajectory of the spacecraft around asteroid Bennu, plotted
in the asteroid-fixed rotating frame, as well as the surface landmarks used for optical navigation.
Figure 2 reports the same spacecraft trajectory plotted in the inertial (non-rotating) frame.

The information below has been provided by other mission teams to perform your navigation
analysis.

1.1 State Estimation Problem

The asteroid navigation problem can be formulated as follows. Let X be the state vector represent-
ing the spacecraft trajectory, defined as:
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Figure 1: Spacecraft trajectory around asteroid Bennu and surface landmarks used for optical
navigation, in the asteroid-fixed rotating frame. The set of landmarks visible from the last spacecraft
position (circles) are highlighted.

Figure 2: Spacecraft trajectory in the inertial frame.
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X = [r, ṙ]
T

(1)

= [x, y, z, ẋ, ẏ, ż]
T

(2)

where r = [x, y, z]T and ṙ = [ẋ, ẏ, ż]T are the spacecraft position and velocity vectors relative
to the asteroid center of mass, expressed in the inertial frame shown in (Figure 2). The objective
is to estimate the time evolution of the state X = X(t) as well as the associated covariances, using
line-of-sight, landmark-based observations (defined below).

2 Dynamics Model

The Flight Dynamics team suggested to study navigation performance for a so-called terminator
orbit, similar to the one flown by the OSIRIS-REx spacecraft (Figure 2).3 Such orbits are relatively
stable despite the challenging dynamical environment of asteroids. In the vicinity of the asteroid,
you can assume that there are two forces affecting the spacecraft motion: the asteroid (two-body
or point-mass) gravity and the Solar Radiation Pressure (SRP).

The nonlinear spacecraft dynamics can be formulated as:

r̈ = f + w̃ (3)

where f is the nonlinear function associated with the deterministic (known) dynamics model.
The nonlinear dynamics function is defined as:

f = a2B + aSRP (4)

where a2B and aSRP are the accelerations caused by the asteroid two-body gravity and by Solar
Radiation Pressure (SRP), respectively. Such terms are described in Sections 2.1 and 2.2.

w̃ = [w̃x, w̃y, w̃z]
T is a process-noise term, where each component w̃i ∼ N (0, σ2

w), i = 1, 2, 3, is
modeled as a normally-distributed random variable with zero mean and variance σ2

w. That is, the
process noise can be considered as Additive White Gaussian Noise (AWGN), whose components
are independent and identically distributed (i.i.d). Process noise is included in the dynamics model
to account for stochastic, unmodeled perturbations.

2.1 Two-Body Gravity

Since the spacecraft is orbiting around the asteroid, the latter is the primary gravitational attractor.
The asteroid’s gravity can be approximated using the two-body (also known as Keplerian) gravity
model. The spacecraft 2-body acceleration vector a2B is given by:

a2B = −µA

r3
r (5)

where µA is the asteroid’s gravitational parameter (its mass multiplied by the gravitational
constant) and r is the spacecraft position vector relative to the asteroid center of mass.
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2.2 Solar Radiation Pressure

In the dynamical environment around low-gravity objects such as Bennu, non-gravitational forces
can have a significant effect on the orbital motion. The predominant one is the Solar Radiation
Pressure (SRP), caused by the photon flux emitted by the Sun and impacting the spacecraft surface.
A first-order approximation of SRP effects can be obtained using the so-called cannonball model,
whose acceleration vector aSRP can be written as:2

aSRP = − Φ0

|rS/A|2

(
1 +

4

9
ρ

)
A

m
r̂S/A (6)

where Φ0 is the solar pressure constant, ρ is the spacecraft reflectivity coefficient, A/m is the
spacecraft area-to-mass ratio, rS/A is the position vector of the Sun relative to the asteroid center
of mass, and r̂S/A is the corresponding unit vector. Observe that, in the cannonball model, the
SRP effect is oriented along the direction from the Sun to the asteroid.

Importantly, observe that aSRP does not depend on the spacecraft position, as it can be assumed
that the solar flux in the region around the asteroid is uniform, i.e., its spatial gradient is negligible.
This means that aSRP can be thought of as a known external force, or a control input. (Hint: how
does this affect the modeling and implementation of your nonlinear and linearized dynamics?)

2.3 Nominal Trajectory

When using a linearized estimation algorithm, a nominal state Xnom is required to perform lin-
earization. In this study, you will need to propagate your own nominal trajectory, using the provided
nominal initial state X0,nom. (Hint: should you include random perturbations w̃ when propagating
the nominal trajectory?)

2.4 Off-Nominal Trajectories

In reality, there is often a deviation between the true and the nominal state. Therefore, it is
important to study the effect of such off-nominal deviations on estimation performance. This can
be simulated numerically by (i) perturbing the initial state, with respect to the nominal, and
(ii) propagating such a perturbed initial state to simulate the corresponding true state evolution.
(When this process is performed many times and by randomly sampling the initial state deviation,
we refer to it as Monte Carlo simulation.)

2.4.1 Effect of State Deviations

In the challenging dynamical environment of asteroids, state deviations can have a significant im-
pact on trajectory evolution. Additionally, the perturbation direction can significantly change the
evolution of the state. That is, position and velocity deviations with the same magnitude but
different directions can have significantly different effects on the dynamics. As such, it is highly
recommended to perturb the initial state along individual directions first, and see how each direc-
tional case affects the dynamics. It is also recommended to study the effect of position and velocity
deviations individually. This will help inform and understand more advanced performance analyses.
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2.4.2 A-priori Uncertainties

Other mission phases preceded proximity operations, such as approach and asteroid characteriza-
tion. During these phases, the environmental uncertainties are typically reduced, and the spacecraft
trajectory is refined. These estimates are then used to inform the a-priori uncertainties used for
proximity operations. Thus, it is fair to assume relatively small a-priori covariance values when in
close proximity with the asteroid. (Hint: for this scenario, keep the position covariances below 10
m and velocity covariances below 1 mm/s. You are encouraged to explore anisotropic covariance
matrices, i.e., how different covariance magnitudes in different directions affect estimation perfor-
mance. For example, what happens if you have small uncertainties on the orbit plane and large
uncertainties in the direction orthogonal to the plane, or vice versa? What would happen if these
uncertainties were significantly larger, for some reason? Would that inform the navigation strategy
and the choice of the estimation algorithm?)

3 Measurement Model

The Spacecraft team has provided you with the specifics on the camera model to simulate line-
of-sight measurements of the surface landmarks. You can use a pinhole camera model, where a
3D point in the scene is observed as a perfect 2D projection of that point onto the camera plane.
This model assumes that error sources such as lens distortion, noise, and calibration errors, are
negligible. Furthermore, you can assume that the position of the camera center (sometimes referred
to as the camera focal point) coincides with the spacecraft position r.

Thus, the observation (measurement) of a 3D landmark l is given by its pixel location [u, v]T

within the image. These measurements can be modeled by:

u = f
(l− r)T · îC
(l− r)T · k̂C

+ u0 + ν̃u (7)

v = f
(l− r)T · ĵC
(l− r)T · k̂C

+ v0 + ν̃v (8)

where f is the camera focal length, expressed in units of pixels, l is the landmark position vector,
and r is the spacecraft position vector. îC , ĵC , and k̂C are the unit vectors corresponding to the
camera axes, such that the rotation matrix RNC , which maps a vector from the camera frame C to
the inertial frame N , is given by:

RNC =
[̂
iC ĵC k̂C

]
(9)

where îC , ĵC , and k̂C are the columns of the matrix RNC .
Here, it is assumed that k̂C is the camera boresight, i.e., the axis pointing from the camera

location toward the observed scene (see Figure 3), whereas îC and ĵC , are the horizontal and
vertical axes with respect to the image, respectively. Notice that u and v are the measured pixel
coordinates along îC and ĵC , respectively.

The rotation matrix RNC describes the orientation of the camera in space. This is typically
estimated by the onboard Attitude Determination and Control System (ADCS). Thus, the numerical
values of RNC are provided to you and you simply need to plug them into the equations. Note that
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Figure 3: Graphical representation of the measurement model and observation geometry. For
simplicity and ease of visualization, the schematic is presented in 2D.

the camera attitude is always nadir-pointing, i.e., the camera k̂C axis always points exactly towards
the asteroid center. Also note that the camera attitude is only provided for the observation epochs.

The parameters [u0, v0]
T represent constant offsets defining the pixel location where k̂C inter-

sects the image plane. This pixel location, also known as the principal point, effectively represents
the center of the image. (Interestingly, observe how the values of u and v do not depend on the
distance ||l− r||; that is, all infinite points along the line of sight l− r yield the same [u, v] values.
Hence, the landmark’s range cannot be directly observed with line-of-sight measurements.)

Lastly, ν̃u ∼ N (0, σ2
u) and ν̃v ∼ N (0, σ2

v) represent the measurement noise components for u
and v, respectively. The two noise terms ν̃u and ν̃v are i.i.d. AWGN processes.

A graphical representation of the measurement model and the observation geometry is presented
in Figure 3.

3.0.1 Measurement Data Format

You will be provided with a dataset of measurements to process. The dataset is in the form of a 2D
matrix, where each row contains an observation and the associated metadata. In particular, each
row is in the form [t, ID, u, v], where t is the observation epoch in units of s, ID is the identification
number of the observed landmark, whereas u and v are the actual observations, in units of pixels.
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3.1 Landmark Catalog

You have been provided with a catalog of surface landmarks, selected by the Operations team using
the available shape model of asteroid Bennu. Given the shape model’s high resolution, you can
assume that such landmarks are perfectly known, i.e., you do not need to estimate their position.

3.1.1 Asteroid-Fixed Frame

Landmarks are provided to you in the asteroid-fixed frame A. Due to the asteroid rotational motion,
the rotation between the frame A and the inertial frame N changes over time. For this analysis,
you can assume that the asteroid spins about its principal axis, which coincides with the third axis,
k̂A, of frame A. Further, you can assume that A and N coincide at the first epoch t0, so that:

RNA(t0) = I3×3 (10)

where I3×3 is the 3× 3 identity matrix.
The rotation between A and N for each subsequent time t is a pure rotation about k̂A, such

that:

RNA(t) =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (11)

where θ = ωAt is the rotation angle and ωA is the asteroid rotation rate, which is very well
known and assumed to be constant.

3.1.2 Landmarks Visibility

Not all landmarks are visible at all times. At any given time t, landmarks can be detected if both
the following conditions are satisfied: landmarks shall (i) lie inside the camera field of view (FOV)
and (ii) not be occluded by the asteroid itself, i.e., they shall not be on the opposite side of the
surface, relative to the camera view.

Let (umax, vmax) be the maximum image coordinates for the given camera, in units of pixels.
These parameters effectively define the image resolution, which is umax×vmax. Then, you can check
if a landmark lies inside the camera FOV based on the Boolean variable:

landmark in FOV = (0 ≤ u ≤ umax) ∧ (0 ≤ v ≤ vmax) ∧ ((l− r)T · k̂C > 0) (12)

where ∧ is the logical and operator. landmark in FOV is True when the landmark is inside the
camera FOV.

To check if the landmark is in front of the surface and not occluded by it, we can assume that
the asteroid surface is a sphere, which is a reasonable first-order assumption for Bennu. Then, you
can use the following Boolean variable:

landmark in front = lT · k̂C < 0 (13)

where landmark in front is True when the landmark is in front of the surface, from the camera
perspective, i.e., it is not occluded. You are invited to think about why each term in the above
conditions is required to determine landmark visibility.
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3.1.3 Landmarks Implementation Tip

To facilitate debugging, it is recommended to start with simplified landmark measurements. Then,
you can add new components to your code step by step, aiming to maintain a working code through-
out increasing levels of complexity. For instance, you could start by using a single landmark and
assuming that the asteroid does not rotate with respect to the inertial frame. You could even start
from creating a ”fake” landmark and placing it at the center of the asteroid-fixed frame. What do
the measurements look like in this case? Then, place a landmark along one of the camera axes; the
measurement value along the other camera axis should be zero. Once you have “unit tested” your
implementation, you can relax each of these assumptions individually.

To troubleshoot issues with landmark visibility, it may be helpful to plot both the landmarks
and the spacecraft position/trajectory in the asteroid-fixed frame (as shown, for example, in Figure
1). You could plot the visible and non-visible landmarks with different markers or color codes. This
way, you can visually inspect the observation geometry and determine if your visibility algorithm
makes sense at a high level. For instance, if the visible landmarks are on the back side of the
asteroid relative to the camera, then there is a bug in the code.

3.1.4 Landmark Data Format

You will be provided with a catalog of nl landmark positions {lA,1, . . . , lA,nl
}, expressed in the

asteroid-fixed frame A. The catalog is in the form of a 2D matrix, where each i-th row corresponds
to the landmark whose ID is equal to i. Each row contains the x-y-z Cartesian coordinates of the
corresponding landmark.

4 Simulation Parameters

The parameters required to set up the numerical simulation are reported in Table 1.
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Table 1: Simulation setup parameters

Parameter Value Units Description

µA 4.892 · 10−9 km3/s2 Asteroid gravitational parameter (GM)
ωA 4.296057 hours Asteroid Rotation Period
rS [1.5 · 108, 0, 0]T km Inertial Sun position w.r.t. the asteroid center (1 AU)
Φ0 1 · 1014 kg km/s2 Solar pressure constant
ρ 0.4 − Coefficient of reflectivity

A/m (1/62) · 10−6 km2/kg Area-to-mass ratio
σw 1 · 10−9 km/s2 Process noise standard deviation
f 2089.7959 pixels Camera focal length

(u0, v0) (512,512) pixels Camera principal point coordinates
(umin, vmin) (0, 0) pixels Min. pixel coordinates
(umax, vmax) (1024, 1024) pixels Max. pixel coordinates
(σu, σv) (0.25,0.25) pixels Measurement standard deviation

t0 0.0 s Initial epoch
tf 432000.0 s Final epoch

∆tint 60.0 s Integration time step
∆tobs 600.0 s Time step between observations
r0,nom [0,−1, 0]T km Nominal initial position

ṙ0,nom

[
0, 0,

√
µA

||r0,nom||

]T

km/s Nominal initial velocity (assuming a circular orbit)
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