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Executive Summary 

Resonant frequencies of a body 

describe how the body naturally vibrates or 

oscillates. Systems often experience 

vibrational impulses that may align with the 

resonant frequencies of that system. 

Depending on its purpose, it may be 

important to avoid or align outside 

frequencies with these natural frequencies.  

The purpose of this laboratory is to 

identify the resonant frequencies of two 

aluminum bars using Fourier analysis. The 

bars are vibrated and a strain gauge records 

the vibrational behavior via voltage 

measurements in LabVIEW. Data is exported 

into MATLAB to undergo a Fourier analysis. 

A Fourier analysis of a signal decomposes the 

signal into smaller waves of various 

frequencies and amplitudes. Theoretical 

predictions are calculated based on the bar’s 

properties and compared to the observed 

frequencies from the Fourier analysis. 

Uncertainties in the measurements and 

properties are used to calculate the total 

uncertainty in the theoretical frequencies.  

The short bar’s observed frequency 

deviated from the predicted value by 10.0%. 

The long bar’s observed frequency deviated 

from the predicted value by 9.1%, 10.6%, or 

40.9%, for the first three modes of vibration. 

All the observed frequencies fell within a 

95% confidence interval of the theoretical 

values, except for the first mode of vibration 

in the long beam. The deviations in 

theoretical and observed values are sufficient 

to necessitate the use of a Fourier analysis. 

 

 

Introduction 

Resonance in a material body is a 

phenomenon that occurs when the body 

oscillates with the same frequency as the 

natural frequency of that body. The body’s 

material and geometry determine its natural 

frequencies. When the frequency is matched 

by an outside force the amplitude of 

oscillation is maximized.  

This laboratory determines the 

resonant frequencies of a thin aluminum bar 

held in a cantilever position at a certain 

length.  These frequencies are found using 

strain gauges on the aluminum bar to output 

a frequency signal when the bar is put into 

oscillation. Then the data is analyzed with 

MATLAB to determine the dominant 

frequencies hidden amidst the noise. 

Following these methods, resonant 

frequencies of a body can be discovered by 

analyzing the natural vibrations the body 

produces. 

Methods 

To collect vibration data, strain 

gauges are mounted to the aluminum bars. 

The bars’ specifications and corresponding 

uncertainties are listed in Table 1. When the 

bar is plucked, the changes in resistance are 

amplified with a Wheatstone bridge which 

outputs a change in voltage.  

LabVIEW is used as the transducer to 

record the voltage oscillations with respect to 

time and then exports the raw data into 

MATLAB. The raw data collected is 

unfiltered and noisy, therefore Fourier 

analysis is used in MATLAB to minimize the 

noise and identify the dominant frequencies.  
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To verify the functionality of the 

Fourier analysis code, a test is ran using a 

constructed voltage signal. MATLAB is used 

to create a sine wave with a frequency of 

50Hz, and amplitude of 1V for 1 second. The 

sampling frequency is set at 300Hz. Note that 

a minimum frequency, known as the Nyquist 

frequency, could be found at a sampling 

frequency of 100Hz. This is twice the value 

of the highest frequency present in the signal.  

Table 1. Aluminum Bar Specifications. 

6061-T6 Al    Specifications 

𝑳𝒔𝒉𝒐𝒓𝒕 10.0625 ± 0.03125 in 

𝑳𝒍𝒐𝒏𝒈   42.875 ± 0.03125 in 

W         1.0 ± 0.014 in 

t   0.0625 ± 0.006 in 

𝝆   0.0975 ± 0.001365 lb/in3 [1] 

E 9195.34 ± 290.074 ksi [2] 

 

A random number generator added 

noise to the signal by adding a vector of 

random values (~ N(0, 1)) to the signal. 

MATLAB’s Fourier analysis function (DFT) 

is used on the two signals and then 

transformed into a power spectral density 

(PSD). The analysis could be performed 

manually using Eq. 1. Note the power 

spectral density is proportional to square root 

of the frequency amplitude. 

 𝑋𝑘 = ∑ 𝑓(𝑡)𝑒−2𝜋𝑖𝑘/𝑁𝑁−1
𝑡=0   Eq. 1 

A theoretical resonant frequency can 

be calculated based on the geometry of an 

object. The first three theoretical resonant 

frequencies are calculated using Eq. 2. which 

correspond to the modes of vibration, 𝑛 =

1, 2, 3. 

 

 𝑓𝑛 =
𝐶𝑛

2

2𝜋𝐿2 √
𝐸𝐼

𝜌𝐴
  Eq. 2 

Where 𝑓𝑛 is the theoretical resonant 

frequency of mode 𝑛 = 1, 2, 3,  𝐿 is the 

length of the bar, 𝐸 is the modulus of 

elasticity, 𝐼 is the moment of inertia, 𝜌 is the 

density of the material, 𝐴 is the cross-

sectional area of the bar, and 𝐶𝑛 is the mode 

coefficient. The coefficients are 𝐶1 = 1.875, 

𝐶2 = 4.694, and 𝐶3 = 7.855 for frequency 

modes of 𝑛 = 1, 2, 3 respectively.  

The uncertainties for the variables in 

Eq. 2 are turned into standard deviations by 

assuming a 95% confidence interval and 

dividing out the corresponding z-value of 

1.96. The standard deviations in the 

theoretical frequencies are calculated using 

Eq. 3, which follows the typical form for 

uncertainty propagation. 

Figure 1. Nodes of resonant vibration 

in a cantilever beam [3]. 
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𝜎𝐿)

2

+ (
𝜕𝑓𝑛

𝜕𝐸
𝜎𝐸)

2

+ (
𝜕𝑓𝑛

𝜕𝜌
𝜎𝜌)

2

+ (
𝜕𝑓𝑛

𝜕𝑡
𝜎𝑡)

2

  

Where 
𝜕𝑓𝑛

𝜕[𝐿,𝐸,𝜌,𝑡]
  are the partial 

derivatives of Eq. 2 with respect to each 

variable, and 𝜎[𝐿,𝐸,𝜌,𝑡] are the standard 

deviations of the properties used in Eq. 2. The 

frequency standard deviation is then 

converted back to an uncertainty by 

multiplying it by the 95% confidence z-value, 

1.96.  

With each mode of vibration, there is 

a node present along the bar where the 

amplitude of oscillation is zero. These nodes 

may be predicted mathematically but they 

can also be observed visually on the beam 

while it is vibrating. Figure 1 shows the 

theoretical predictions of the node locations. 

Results 

The noisy test signal is shown in Fig. 

2. The corresponding Fourier analysis for the 

noisy data is shown in Fig. 3. The Fourier 

analysis detected the test frequency applied 

to the signal, 50Hz. 

 

The voltage signal for the short bar is 

shown in Fig. 4. As shown in Fig. 5, the 

Fourier analysis on the short bar reveals a 

resonant frequency of 18Hz, corresponding 

to the first mode. As shown in Fig. 6, there 

are no distinguishable frequencies 

corresponding to the predicted second and 

third modes of vibration. Therefore, the short 

bar only exhibited the first mode of vibration.  

The voltage signal for the long bar is 

shown in Fig. 7. Figure 8 shows a magnified 

view of the signal to show the low amplitude 

frequency. Figure 9 shows all three observed 

frequencies for the three observed modes in  
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Figure 2. Noisy voltage (V) signal as a function of time (s). 
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Figure 3. Power Spectral Density (V2/Hz) 

as a function of frequencies for a noisy 

signal. 

Eq. 3 
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table 2. Note that the amplitude of the third 

mode is too small to be visible while 

vibrating. 

The observed frequencies are found 

by locating the max PSD in MATLAB for 

both lengths. In both cases, the frequencies 

are compared with theoretical calculations 

and a percent difference is computed. The 

results are shown in Table 2. 

 

 

 

 

 

 

 

  Theoretical 

(𝒖𝒇 (95%)) 
Observed 

% 

Diff 

Short 

Bar 

𝑓1 20.6 

(4.0) 
18.1 10.0 

𝑓2 126 

(24.8) 
- - 

𝑓3 352 

(69.4) 
- - 

Long 

Bar 

𝑓1 1.09 

(0.21) 
0.65 40.9 

𝑓2 6.86 

(0.66) 
6.13 10.6 

𝑓3 19.18 

(3.62) 
17.43 9.1 
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Figure 4. Voltage (mV) signal as a function of time (s) for a 10” aluminum bar. 
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Figure 5. PSD (mV2/Hz) as a function of 

frequency for the 10” bar. Table 2. Frequency predictions and 

observations for short and long bar. 
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Figure 6. PSD (μV2/Hz) as a function of 

frequency for the 10” bar. 
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Figure 7. Voltage (mV) signal as a function of time (s) for a 42” aluminum bar. 

-2
-1
0
1
2
3
4

m
V

Time (sec)

Figure 8. Voltage (mV) signal as a function of time (s) for a 42” aluminum bar. Magnified 

time to show low amplitude frequencies. 
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Figure 9. PSD (mV2/Hz) as a function of 

frequency for the 42” aluminum bar. 


