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Executive Summary

Resonant frequencies of a body
describe how the body naturally vibrates or
oscillates.  Systems often  experience
vibrational impulses that may align with the
resonant frequencies of that system.
Depending on its purpose, it may be
important to avoid or align outside
frequencies with these natural frequencies.

The purpose of this laboratory is to
identify the resonant frequencies of two
aluminum bars using Fourier analysis. The
bars are vibrated and a strain gauge records
the vibrational behavior via voltage
measurements in LabVIEW. Data is exported
into MATLAB to undergo a Fourier analysis.
A Fourier analysis of a signal decomposes the
signal into smaller waves of various
frequencies and amplitudes. Theoretical
predictions are calculated based on the bar’s
properties and compared to the observed
frequencies from the Fourier analysis.
Uncertainties in the measurements and
properties are used to calculate the total
uncertainty in the theoretical frequencies.

The short bar’s observed frequency
deviated from the predicted value by 10.0%.
The long bar’s observed frequency deviated
from the predicted value by 9.1%, 10.6%, or
40.9%, for the first three modes of vibration.
All the observed frequencies fell within a
95% confidence interval of the theoretical
values, except for the first mode of vibration
in the long beam. The deviations in
theoretical and observed values are sufficient
to necessitate the use of a Fourier analysis.

Introduction

Resonance in a material body is a
phenomenon that occurs when the body
oscillates with the same frequency as the
natural frequency of that body. The body’s
material and geometry determine its natural
frequencies. When the frequency is matched
by an outside force the amplitude of
oscillation is maximized.

This laboratory determines the
resonant frequencies of a thin aluminum bar
held in a cantilever position at a certain
length. These frequencies are found using
strain gauges on the aluminum bar to output
a frequency signal when the bar is put into
oscillation. Then the data is analyzed with
MATLAB to determine the dominant
frequencies hidden amidst the noise.
Following  these  methods, resonant
frequencies of a body can be discovered by
analyzing the natural vibrations the body
produces.

Methods

To collect vibration data, strain
gauges are mounted to the aluminum bars.
The bars’ specifications and corresponding
uncertainties are listed in Table 1. When the
bar is plucked, the changes in resistance are
amplified with a Wheatstone bridge which
outputs a change in voltage.

LabVIEW is used as the transducer to
record the voltage oscillations with respect to
time and then exports the raw data into
MATLAB. The raw data collected is
unfiltered and noisy, therefore Fourier
analysis is used in MATLAB to minimize the
noise and identify the dominant frequencies.
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To verify the functionality of the
Fourier analysis code, a test is ran using a
constructed voltage signal. MATLAB is used
to create a sine wave with a frequency of
50Hz, and amplitude of 1V for 1 second. The
sampling frequency is set at 300Hz. Note that
a minimum frequency, known as the Nyquist
frequency, could be found at a sampling
frequency of 100Hz. This is twice the value
of the highest frequency present in the signal.

Table 1. Aluminum Bar Specifications.

6061-T6 Al  Specifications
Lgpore  10.0625 £0.03125 in
Ligng 42.875 + 0.03125 in

W 1.0 +0.014 in

t 0.0625 + 0.006 in

p 0.0975 +0.001365 Ib/in? [1]
E 9195.34 + 290.074 ksi [2]

A random number generator added
noise to the signal by adding a vector of
random values (~ N(0, 1)) to the signal.
MATLAB’s Fourier analysis function (DFT)
is used on the two signals and then
transformed into a power spectral density
(PSD). The analysis could be performed
manually using Eg. 1. Note the power
spectral density is proportional to square root
of the frequency amplitude.

Xie = TN F(©e 2N Eq. 1

A theoretical resonant frequency can
be calculated based on the geometry of an
object. The first three theoretical resonant
frequencies are calculated using Eq. 2. which
correspond to the modes of vibration, n =
1,2,3.

£, = Cn?® |EI
" 2mI2 [ pA

Eq. 2

Where f, is the theoretical resonant
frequency of mode n=1,2,3, L is the
length of the bar, E is the modulus of
elasticity, I is the moment of inertia, p is the
density of the material, A is the cross-
sectional area of the bar, and C,, is the mode
coefficient. The coefficients are C; = 1.875,
C, = 4.694, and C; = 7.855 for frequency
modes of n = 1, 2, 3 respectively.

The uncertainties for the variables in
Eq. 2 are turned into standard deviations by
assuming a 95% confidence interval and
dividing out the corresponding z-value of
1.96. The standard deviations in the
theoretical frequencies are calculated using
Eqg. 3, which follows the typical form for
uncertainty propagation.

Figure 1. Nodes of resonant vibration
in a cantilever beam [3].
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Eq. 3
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derivatives of Eq. 2 with respect to each
variable, and o, g, are the standard
deviations of the properties used in Eq. 2. The
frequency standard deviation is then
converted back to an uncertainty by
multiplying it by the 95% confidence z-value,
1.96.

With each mode of vibration, there is
a node present along the bar where the
amplitude of oscillation is zero. These nodes
may be predicted mathematically but they
can also be observed visually on the beam
while it is vibrating. Figure 1 shows the
theoretical predictions of the node locations.

Results

The noisy test signal is shown in Fig.
2. The corresponding Fourier analysis for the
noisy data is shown in Fig. 3. The Fourier
analysis detected the test frequency applied
to the signal, 50Hz.
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Figure 3. Power Spectral Density (V?/Hz)
as a function of frequencies for a noisy
signal.

The voltage signal for the short bar is
shown in Fig. 4. As shown in Fig. 5, the
Fourier analysis on the short bar reveals a
resonant frequency of 18Hz, corresponding
to the first mode. As shown in Fig. 6, there
are  no distinguishable  frequencies
corresponding to the predicted second and
third modes of vibration. Therefore, the short
bar only exhibited the first mode of vibration.

The voltage signal for the long bar is
shown in Fig. 7. Figure 8 shows a magnified
view of the signal to show the low amplitude
frequency. Figure 9 shows all three observed
frequencies for the three observed modes in
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Figure 2. Noisy voltage (V) signal as a function of time (s).
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Figure 4. Voltage (mV) signal as a function of time (s) for a 10” aluminum bar.

table 2. Note that the amplitude of the third
mode is too small to be visible while
vibrating.

The observed frequencies are found
by locating the max PSD in MATLAB for
both lengths. In both cases, the frequencies
are compared with theoretical calculations
and a percent difference is computed. The
results are shown in Table 2.

Table 2. Frequency predictions and
observations for short and long bar.
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Figure 5. PSD (mV?/Hz) as a function of
frequency for the 10” bar.
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Figure 6. PSD (nV%/Hz) as a function of

frequency for the 10” bar.
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Figure 7. Voltage (mV) signal as a function of time (s) for a 42” aluminum bar.
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Figure 8. Voltage (mV) signal as a function of time (s) for a 42” aluminum bar. Magnified
time to show low amplitude frequencies.
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