i Example

Measuring the volumetric flow across a pipe using a Pitot
tube:
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CHAPTER S
NUMERICAL INTEGRATION « Approximation:
1
E Background & Numerical Integration Approaches
= Engineering measurements require the calculation of » First approach consist on using the end points to
both derivatives and integrals: approximate the integral to a trapezoid

= Analytical integration can be difficult !

= Same code can be used for many functions

=

= Numerical integration is related to solving ODE’s = Closed vs Open Methods
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Initial Approaches

= Newton-Cotes Integration: Closed Method

« Data is fitted into a curve (function), which is ' /M;’
easy to integrate: polynomial | 3

= Rectangle Method: Closed Method
« Assume a constant value for the function:
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Rectangle Method

= Composite Rectangle Method:
« The domain [a,b] is divided into N intervals: (N+1) points
« Each integral is calculated on every interval
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= More exact than the rectangle method
= More exact as the number of intervals increases

Mid Point Methods

= Midpoint Method: Open Method
= Instead of the extreme points, the

midpoint is used to calculated the integral f(“1”)\-—
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= Composite Midpoint Method
« Domain is again divided in N sections
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Trapezoidal Method -2~y

n Closed Method Fy y=ftx)
: N — L
= Alinear approximation is used to represent = '} 27 e
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» Composite Trapezoidal Method
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: Simpson’s Methods

= This technique approximates the function to TR =t
higher order palynomial instead of a line
= Quadratic function: 1/3 method

i
= 3 points needed: A
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« Mewtan's Polynomial:
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2%

= p(x}=fc:.)+[f(“—*’;iif'—)}( g [’ (=27 (5}« /%) ](;-,,)p-_x,) potoa

2

wp /= [ s [ padde= [[as ple—x)+r(e—x)(x-x) b
=5 !-.:xj—:dt+-ﬁj-:{.r4x,)dv+;f_[:{x-:q)[.\'—xl}dx

Si-mpson’s Methods

« Composite Simpson’s 1/3 method
« Use N several subintervals: different N equations
» Each quadratic equation will invalve two intervals
= Number of intervals must be an even number

= The case for same width is shown: 5= "% rys
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3/8 Sim_pson's Methods

= Cubic function: 3/8 method
« Four points are needed: equally spaced S| s
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» Composite 3/8 methods: |
« N has to be a multiple of 3
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Summary Table

= Single Methods

i i
ey

VT of thie Ramerinn weid in evuinntlog tie
(negral

Recutingle
Equatiom (7.2}

Jta) o ABY (Either e of the endpotnts.)

Midpaint
Equation (7.5)

S #6)72y (The midile point.)

Tenpedoidal
Egnation (7.9)

My and (%) (Bod endpois)

Smpson’s 1/3
Equation (7. 16)

Ae), Ab), med flat B)2Y (Both endpoinis snd
thies snidaflic point.y |

Sempsim’s 3K
Bquution {7.20)

far. finy, (a3t b)), m;{u-:(un]

(Both endpints and two poiwts that dwide: the mmml
mlolhrmmﬂ width sitind orvals )

T S R e
1ok

11

» Composite Methods include several intervals
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Gauss Quadrature

= All methods studied previously use:

» Equally spaced points

« Values of the function at those points.

« Predetermined constant weights

= The Gauss Quadrature Method:
« Points are not equally spaced
= End points are not included

= Weights are calculated to minimize the error

= General Form
« Previously:

Basic Integral on domain [-1,1]:

1= flx)te= f(a)-(b-a)
1= Lrtapes gl oo (452 s

» Gauss Quadrature:

Gauss Quadrature

Coefficients and Weights are calculated by en%rcing

the results for: f(x)=lLxx"x....
Example: n=2

« 4 unknowns: x.x,.C.C, — 4 equations

« Procedure: Take first four functions:
« Pt If;“k‘:\-: Ci-1+ G-l ‘

= Second: J'II.'«b'=(’,.\‘L +Cyx, mp

= Third:

= Fourth:
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Gauss Quadrature

» System reduces to:

« Dividing IV/II:
» Replacing in (I11): , from (I):

= Taking the positive root:
= Choosing x, to be symmetrically opposite to x, :

= Replacing in (T1): ¢, (_y/43)- -, (1/\3) = ¢, =, = ¢ =¢,=I

= Finally:

» Previous 2-term expression will calculate the exact integral for

the 4 functions presented: £(x)=las 5 .

Gauss Quadrature

= Integrals for any other function will have an approximated
value. Examples:

Ifﬁos(x)dx: [sin _\*]]I‘l =2sin(1)=1683 B
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proc

w Accuracy can be improved by increasing the number of terms:
« 3terms — 6 unknowns: Use 6 functions:  f(¥)=Lxx" " x' x
« 4 terms — B unknowns: Use 8 functions: ...
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Gauss Quadrature: General Case

Simple Integral: J'" Sxkde= Z( f(x)

General Integral: /7= _[:’ f{x)e

Changing variable: x —>1

If X=mt+p

= Then:

1= r(xp=[ _r‘[%[r{h—ﬁ)*’b+“]]‘£(”-a)f"

‘[:.,_f'(.t)d\- :%(b“””‘], f(%[f(b~t:)+b4-<(:]}lt

Matlab Commands

= quad(function,a,b)
« Function and limits are needed within a tolerance of 105
= Tolerance is specified for the case: quad(function,a,b,tol)
« Modified Simpson's Method is used

= trapz(x,y)
= Data is entered as two column vectors
« Trapezoid method is used

= dblquad

« Used for double integrals

18

Improper Integrals

= Not all integrals are continuous:
= Check for discontinuity points in the function domain

= Integral may have singularities

= Numerical Integration must be performed by dividing the
whale domain into several domains

« Limit of integrations may need to be approximated
« Consider changing variables to avoid singularities
= Unbounded Limits
= Numerical integrations is possible if the integral converges
= Number of intervals is increased until variation becomes small
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