Ross Fischer Statistical Estimation for Dynamical Systems
Fall 2023 ASEN 5044
Homework 7

Intro

Consider an aircraft moving in a plane with constant speed (i.e. magnitude of velocity) and turning with

a constant angular rate. Such a model is often used by air traffic control tracking algorithms to describe
an aircraft executing coordinated turns. Given 2D inertial position variables £(t) (East position) and n(t)
(North position), the equations of motion are

£= -
M= Q¢
where 2 is the constant angular rate, such that 2 > 0 implies a counterclockwise turn. Using the state

, T
representation z(t) = [5 £ 7‘/} , it can be shown that

sin(QAL) 1 — cos(QAL)T
o o
ane |0 cos(QAL) 0 —sin(QAY)
Q Q
0 sin(QAt) 0 cos(QAL)

where A is the CT LTI state matrix for this system. Use this model for all the questions in this assignment.

Exercise 1

(1) Find A (ignore measurements y and disregard process noise for now). What is the DT LTI model for
this system if we are ignoring the process noise?

Start with the CT LTI system @ = Ax + Bu

¢ 010 0] |[¢ 010 0
¢ 00 0 —Qf [€ 00 0 —Q
= ., = A= + Bu
i 000 11]/|n 000 1
i 0Q 0 0117 0Q0 0

Now, F is simply taken from F = e42!. Ignoring y and process noise will produce a DT LTI system of the

form z(k + 1) = Fa(k) + G(k)u(k).

"] sin(QAL) 1 —cos(QAH)T T 7
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K (k+1) _0 sin(QAY) 0 cos(QLAL) | u )



Ross Fischer ASEN 5044 Page 2 of 13

Exercise 2

(2) For the following parts (a), (b), assume a sampling time At = 0.5sec, @ = 0.045rad/s, and an initial
DT state uncertainty z(0) ~ N (u(0), P(0)) at &k = 0. Again, disregard process noise and measurements
for now (we will revisit this problem in the final HWS.)

(a) Derive an expression for predicted DT state mean u(k) = E|x(k)| and state covariance P(k) =
El(z(k) — u(k))(x(k) — p(k))T] for an arbitrary number of steps & = N into the future, starting from
k = 0. Be sure to express your answer in terms of N, u(0), P(0), and the DT state transition matrix F.

(a) For this problem, we are assuming there is no input Guy) or process noise. Note ji( is referring to
the mean of the distribution of x. First note the first few terms:

zay = Frg),  x@ =Fray = Frg,  xg=Fuq

T = Fae), or e =Fzu)

Since x(y) is a linear combination of x(g)...Or in other words, propagate o) using I, after N steps...

vy = F o)

Note that the noise covariance matrix, R is usually propagated to a new time step in the Batch LLS
equation P, = (H'R™'H)~'. Despite there being no noise, we still have a state covariance

— 1)) "]
- M(o))T]

Py = El(zg) — ) (Tw)
and  Po) = E[(z©0) — w0)) (%)

and Py = E[(FNx) — FN ) (FNzo) — FN o))"
Pivy = FNE[(z0) — o) (z0) — o)) J(FN)T
Py = FY Py (FY)T
So we have,
,u(N) = FN,u(Q), and P(N) = FNP(O)(FN)T
(b) Assume
Om 10m? 0 0 0
85cos(m/4)™ 0 2(m)2 0 0
o) = | P, (0) .
Om 0 0 10m? 0
—85sin(m/4) 0 0 0 2(m)

Perform a 300 step calculation of u(k) and P(k) for k = 1,2,
Plot the following in separate plots:

.....

, 300 starting from these initial conditions.

e cach state element of u(k) versus time, along with £20 (2 standard deviations) upper/lower bounds
showing the uncertainty for each state at each time k (these can be obtained by looking at the appropriate
multiples of the square root of the corresponding diagonal entry of P(k), since each diagonal entry is the
variance of some state)
e only the positive 20 values versus time for each state at time k.

Be sure to label all axes with appropriate units, and comment on the results.
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Figure 1: Problem 2)b)

We see that easting and northing position follows sinusoidal paths, suggesting a circular motion. Simi-
larly, the respective velocities follow a sinusoidal motion. If the velocities were combined into a magnitude,
we would see a constant velocity magnitude. The uncertainty of the position states grow as the aircraft
flies further away, but interestingly it decreases as it returns to it’s original position. The uncertainty of

the velocities are constant. .
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Exercise 3

3. Consider now computing the probability of collision for two aircraft turning indepen-
dently at the same altitude at the same time, where the initial position and velocity of the
aircraft are unknown. Let x, denote the state of aircraft a and let z;, denote the state of
aircraft b. A ‘collision’ will simply be modeled as an event where both aircraft occupy a
bounded rectangular region of airspace at the same time. That is, if r,(k) = [£,(k), 5. (k)]
and (k) = [&(F), m(k)]”, a collision occurs at time k whenever r.(k) = r,(k) — (k)
lies inside the region R defined by A&(k) € [—&r.&r| and An(k) € [—ng.7R], where

AL(k) = &,(k) — &(k), An(k) = n.(k) —ny(k), and £g and ng are known constants.

At time k& = 0, suppose both aircraft states are independent and normally distributed,
with 24(0) ~ AN (1a(0), Pa(0) and 23(0) ~ N (p5(0), F5(0)). Also assume that At=0.5 s,
Q, = 0.045 rad/s and €, = —0.045 rad/s (i.e. the aircraft turn in opposite directions at
the same rate). Again, ignore process noise and measurements.

Figure 2: Problem 3)

(a) Derive the expression for the mean and covariance parameters of the pdf p(r.(k)) at
any time k, given that r.(k) ~ N(p, (k). P, (k) (i.e. the pdf for r.(k) must be a
multivariate Gaussian). Your answers should be in terms of components of F, and F
(the STMs for each aircraft), as well as components of 4,(0), 14,(0) and P,(0), B,(0).

(Hint: The concept of marginalizing multivariate Gaussian pdfs was covered earlier
in the course, and will be very useful to apply here.)

Figure 3: Problem 3)a)

Start by using the same approach from exercise 2 to get the mean of the state, z....

Te(k) = Ta(k) — To(k) Loy = F tao)
Elz.] = Elz,] — Bz fan (k) = Fo fhay 0)
Foxe(k) = Haq(k) = Hay(k)

k k
Haetk) = FoyHwa(0) = FoyHay(0)
The variance of a difference of two independent variables is the sum of their variances...

Poct) = Prate) T Puyi)
and Py, = Ffana(o)(Ffa)T
and  Pu,y = Fy Pryo)(Fi )"
50 Puy = FY Poyo)(Fi)" + F} Py (Fa )"

And so we have z.x) ~ N (L. k) Pooi))-
Now, "extract” the relevant information from p,  and P,, by setting up the following equation...

Ty = J (k)

1000
0010

¢ 1000
n 0010

= 33 A2 T2 Y
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Now solve for ey and P, ).

Horegy = E[TC(k)] = E[Ta(k) - Tb(k)]
Elrew] = T Fy Elra,o)] — T Fy Elrs0)]

PTc(k) = E[(Tc(k) - Mrc(k))(rc(k) - MTC(m)T]
Instead of fully deriving P, (x)... we know which elements of P, ) correspond to the elements of the states

Z.. Simply pass P, () through a ” j” ﬁlter...
The full equation for Pro(ky and P

tro(ky = T (F2 iz 0) = F2 tay0))
Prky = T(Fy Po)(FE)T + F2 Poyo)(FE))TT

(b) Use the result from part a above to derive an integral expression for the probability of
collision at any time k.

Figure 4: Problem 3)b)

Where r.=1r,—1, =
Me

P(rety) ~ N (Uerys Pery)
1
(2m)2/2\/| Pery|

1 _
. e—5[(Tc(k)—urc(m)TPc(é)(Tc(k)—#rc(k))}

P(rery) =

P(collision!) = / / p(rery)dnedé. = P([—€r < & < Er] N [~1r < e < NR))

o 1 -1
Plcollsion!) = oo M / / eap(—3[(rey — )" Py (regey — b)) e e

(¢) Plot the probability of collision vs. time using a simulation run of 150 secs starting
from the following initial conditions

1, (0) = [0 m, 85 cos(m/4) m/s 0 m, —85sin(m/4) m/s|"
P.(0) = diag([10 m?,4 (m/s)%, 10 m?, 4 (m/s)?),

115(0) = [3200 m, 85 cos(w/4) m/s, 3200 m, —85sin(w/4) m/s]"
P,(0) = diag([11 m?,3.5 (m/s)?, 11 m?,3.5 (m/s)?],

and using £ = 100 m, ng = 100 m. Be sure to label axes with appropriate units,
and comment on the results. In particular, at what time steps are the vehicles in
greatest danger of colliding? Also, what happens to the probability of collision as time
increases? What explains this behavior? (Hint: Matlab’s mvncdf .m command is useful
here — read the documentation for this function to learn more about it).

Figure 5: Problem 3)c)
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Figure 6: Problem 3)c)

We see (through the position plot) the paths of each aircraft. This could be expanded to show how
close they are at each time step, but through analysis we see that there are two points where the aircraft
are considerably closer than at other times. This is, of course, where the paths cross on the plot. At these
points, the probability of a collision increases to almost 0.5 at around t 40 seconds and t 100 seconds. This
is explained by the aforementioned phenomena of the aircraft approaching each other. The probability
doesn’t reach 100% because there is an uncertainty associated with each aircraft’s position.
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Advanced Question 7

Plot the predicted horizontal path of the aircraft in question 2b and show the uncertainty and simulated
errors. That is, plot the predicted position state mean in the & vs. v plane, but only show the location
every 30 steps. Add the 20 Gaussian covariance ellipses for the position states to the plot, with each
ellipse centered on the predicted position state mean at the corresponding time step. On the same plot
for each ellipse, also show the resulting position estimates of a sufficiently large number of Monte Carlo
simulation runs of the aircraft motion sampled from the uncertain initial conditions to verify that your
resulting ellipses are in fact correct. Explain how/why your samples provide verification.

To plot an ellipse, we first consider the equation for a non-rotated ellipse at (0,0), with radii r, and r,.

z(t) = rpcos(t), y(t) = rysin(t), for t=0:2m
This ellipse can be rotated by 6...

x(t) cos(f) —sin(0)| |rpcos(t)
y(t) sin(0)  cos(0) rysin(t)

Now, we can represent a covariance matrix as an ellipse by considering the square root of each eigenvalue
of the covariance matrix as the radii of the ellipse, or 7, = v/A; and r, = v/As. The square root is taken
because A? corrensponds to o2, and we are simply interested in . We then multiply /o by a given
mahalanobis distance, s. In this case, so = 20.

x(t) Vig Vag| | 8%V Acos(t)
y(t) Vi, Vay| |8*VAasin(t)

Now, perform position estimate via Monte Carlo simulations of 200 samples for each position. The
mahalanobis distance s, tells us how many ¢’s a point is away from the mean. It is a sum of squares
which corresponds to a chi squared distribution. I initially thought I could take random samples from a
chi squared distribution, but I think I would also have to know the corresponding # value, which I don’t.

For the Monte Carlo simulations, simply use MATLAB’s mvndrnd function to generate £ and 7 samples.
These samples provide verification that the ellipses are correct because, through calculation or observation,
we can see that approximately 68 % of the samples fall within the 20 bounds of the ellipse.
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Aircraft Position, Uncertainty, and Monte Carlo Estimates
Every k=30 steps (15 seconds)
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Figure 7: Problem 3)c)

MATLAB Code

%% ASEN 5044 HW6

% Ross Fischer

% 10/24/2023

format long g

clc, clear all, close all

set (0, ’defaulttextinterpreter’,’latex’);
set (0, ’defaultaxesfontsize’,16);

hh 2b
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%Find the DT LTI representation for this system, using...
dt=0.5; %sec
om=0.045;

A =

[0 10 0;

0 0 0O -om;

0001,

0 om 0 0];

[1 (sin(om*dt))/om 0 -(1-cos(om*dt))/om;
0 cos(om*dt) O -sin(omx*dt);

0 (1-cos(om*dt))/om 1 sin(om#*dt)/om;

0 sin(om*dt) O cos(om*dt)];

[1000; 0010];

xmu(:,1)=[0; 85*cos(pi/4); 0; -8b*sin(pi/4)];

P(:,

:,1) = diag([10, 2, 10, 2]1);

k=300; %steps
times=(0:k)*dt;

for

end

for

N=2:k+1

Fk = F7(N-1);

xmu(:,N) = Fkxxmu(:,1);
P(:,:,N) = FkxP(:,:,1)*Fk’;

ploti=1

figure;

tiledlayout(4,2);

%Tile 1

tilel=nexttile;

hold on

plot(times, xmu(1,:),’b-’)

plot(times, xmu(l,:) + 2*xsqrt(reshape(P(1,1,:),1,[1)), ’b--?)
plot(times, xmu(1,:) - 2xsqrt(reshape(P(1,1,:),1,[1)), ’b--")
title(’$\mu \; and \; \pm 2 \sigma \; vs \; t$’, ’interpreter’,’latex’)
ylabel (’$\mu_1 = \xi (m)$’, ’Rotation’,0,’interpreter’,’latex’)
grid on

tile2 = nexttile;

plot(times,2*sqrt(reshape(P(1,1,:),1,[1)), *b--7)

title(’$ 2 \sigma \; vs \; t $’, ’interpreter’,’latex’)

ylabel(’$ 2 \sigma_{\xi} (m)$’, ’Rotation’,0, ’interpreter’, ’latex’)
grid on

tile3 = nexttile;

hold on

plot(times, xmu(2,:),’r-’)

plot(times, xmu(2,:) + 2*sqrt(reshape(P(2,2,:),1,[1)), ’r--’)
plot(times, xmu(2,:) - 2*sqrt(reshape(P(2,2,:),1,[1)), ’r--?)

ylabel (’$\mu_2 = \dot{\xi} (\frac{m}{s})$’, ’Rotation’,0,’interpreter’,’latex’)
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grid on

tiled = nexttile;

plot(times, 2*sqrt(reshape(P(2,2,:),1,[1)), ’'r--’)

ylabel (’$2 \sigma_{\dot{\xi}} (\frac{m}{s}) $’, ’Rotation’,0,’interpreter’,’latex’)
grid on

tileb = nexttile;

hold on

plot(times,xmu(3,:),’g-")

plot(times, xmu(3,:) + 2%sqrt(reshape(P(3,3,:),1,[1)), ’g—-’)
plot(times, xmu(3,:) - 2*sqrt(reshape(P(3,3,:),1,[1)), ’g—-’)
ylabel(’$\mu_3 = \eta (m)$’, ’Rotation’,0,’interpreter’,’latex’)
grid on

tile6 = nexttile;

plot(times, 2%*sqrt(reshape(P(3,3,:),1,[1)), 'g--")

ylabel(’$2 \sigma_{\eta} (m)$’, ’Rotation’,0,’interpreter’,’latex’)
grid on

tile7 = nexttile;

hold on

plot(times,xmu(4,:),’k-")

plot(times, xmu(4,:) + 2*sqrt(reshape(P(4,4,:),1,[1)), ’k--")

plot(times, xmu(4,:) - 2*sqrt(reshape(P(4,4,:),1,[1)), ’k--")

ylabel (’$\mu_4 = \dot{\eta} (\frac{m}{s})$’, ’Rotation’,0,’interpreter’,’latex’)
xlabel(’$time (sec)$’, ’interpreter’, ’latex’)

grid on

tile8 = nexttile;
xlabel(’time (sec)’)
plot(times, 2*sqrt(reshape(P(4,4,:),1,[1)), ’k--’)
ylabel (’$2 \sigma_{\dot{\eta}} (\frac{m}{s})$’, ’Rotation’,0,’interpreter’,’latex’)
xlabel (’$time (sec)$’, ’interpreter’, ’latex’)
grid on
end

%% AQ7

%every 30 points

% xmu30 = xmu(:,1:30:end);

% P30 = JxP(:,:,1:30:end)*J’;
times30 = times(1:30:end);

figure;

hold on

for N=1:length(xmu(1,30:30:end))
xmu30(:,N) = Jxxmu(:,N*30);
P30(:,:,N) = J*P(:,:,N*x30)*J’;
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[eigvec, eigval] = eig(P30(:,:,N));

ellipse(:,:,N) = eigvec * [2 * sqrt(eigval(l,1)) * cos(linspace(0,2*pi)); 2 * sqrt(eigval(

plotting(1) = plot(ellipse(l,:,N) + xmu30(1,N) , ellipse(2,:,N) + xmu30(2,N), ’r-’, ’linew
MCsamples = mvnrnd (xmu30(:,N),P30(:,:,N),200);
plotting(2) = scatter(MCsamples(1l,:), MCsamples(2,:), 10, [0.9290 0.6940 0.1250], ".")

end

plotting(3) = scatter(xmu30(1,:), xmu30(2,:), 100, ’kx’, ’LineWidth’,1)
legend(plotting,{’Position Uncertainty (2\sigma)’,’Monte Carlo Samples’,’Position Mean’})
title(’Aircraft Position, Uncertainty, and Monte Carlo Estimates’)

subtitle(’Every k=30 steps (15 seconds)’)

xlabel (" $\xi$’)

ylabel(’$\eta$’, ’rotation’,0)

axis square

grid on

cdf_all=[cumsum(px)*dx; xvall;

[C,ia,ic]=unique(cdf_all(1l,:)); %ia will provide indices of unique values so we can later inte
cdf _unique=round(cdf_all(:,ia)*100000)/100000; %multiply, round, divide to give same results t
N=[100] ;

hh part c

oma = 0.045; %rad/s

omb = -0.045; Y%rad/s

Fa = [1 (sin(omax*dt))/oma 0 -(1-cos(omax*dt))/oma;
0 cos(omaxdt) O -sin(omaxdt);
0 (1-cos(oma*dt))/oma 1 sin(oma*dt)/oma;
0 sin(omaxdt) O cos(oma*dt)];

Fb = [1 (sin(omb*dt))/omb 0 -(1-cos(omb*dt))/omb;

0 cos(omb*dt) O —-sin(omb*dt);
0 (1-cos(omb*dt))/omb 1 sin(omb*dt)/omb;
0 sin(omb*dt) O cos(omb*dt)];

xiR = 100;

etaR = 100;

lowerBound = [-xiR -etaR];
upperBound = [xiR etaR];

mua(:,1) = [0; 85*cos(pi/4); 0; -85xsin(pi/4)];

mub(:,1) = [3200; 85%cos(pi/4); 3200; -85*sin(pi/4)] ;
murc(:,1) = Jx(mua(:,1) - mub(:,1));

Pa(:,:,1) diag([10; 4; 10; 41);

Pb(:,:,1) = diag([11; 3.5; 11; 3.5]);

Prc(:,:,1) = J x (Pa(:,:,1) + Pb(:,:,1)) * J’;

Pcoll(1) = mvncdf (lowerBound,upperBound,murc(:,1)’,Prc(:,:,1));

k=300; %steps
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times=(0:k)*dt;
for N=2:k+1
Fak = Fa~(N-1);
Fbk = Fb~(N-1);
mua(:,N) = Fak * mua(:,1);
mub(:,N) = Fbk * mub(:,1);
murc(:,N) = Jx(mua(:,N) - mub(:,N));
Pa(:,:,N) Fak*Pa(:,:,1)*Fak’;
Pb(:,:,N) = Fbk*Pb(:,:,1)*Fbk’;
Prc(:,:,N) = J x (Pa(:,:,N) + Pb(:,:,N)) *x J’;
Pcoll(N) = mvncdf (lowerBound,upperBound,murc(:,N)’,Prc(:,:,N));

end

for plot3=1
figure;
tiledlayout(2,1);
hTile 1
tilel=nexttile;
hold on
plot(mua(l,:), mua(3,:),’b-")
plot(mub(1l,:), mub(3,:),’r-")
scatter(mua(l,1), mua(3,1), ’b’)
scatter (mub(1,1), mub(3,1), ’r’)
title(’$Aircraft \; Position$’)
xlabel (’$\xi$’)
ylabel (’$\eta$’, ’Rotation’,0)
legend(’Aircraft A’, ’Aircraft B’, ’A, Start Location’, ’B, Start location’)
axis equal
grid on

tile2 = nexttile;
plot(times,Pcoll)
title(’$Collision Probability$’, ’interpreter’,’latex’)
xlabel(’$Time (sec)$’)
ylabel (’ $Probability$’, ’Rotation’,0)
grid on
end



